Let $\ell_{1} \subseteq \mathbb{R}^{2}$ be the line with equation $x-y=0$ and $\ell_{2} \subseteq \mathbb{R}^{2}$ the line with equation $x-y=4$.
16.1 If possible, describe ℓ_{1} as a span. Otherwise explain why it's not possible.
16.2 If possible, describe ℓ_{2} as a span. Otherwise explain why it's not possible.
16.3 Does the expression $\operatorname{span}\left(\ell_{1}\right)$ make sense? If so, what is it? How about span $\left(\ell_{2}\right)$?

Set Addition

If A and B are sets of vectors, then the set sum of A and B, denoted $A+B$, is

$$
A+B=\{\vec{x}: \vec{x}=\vec{a}+\vec{b} \text { for some } \vec{a} \in A \text { and } \vec{b} \in B\} .
$$

17

$$
\text { Let } A=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}, B=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\} \text {, and } \ell=\operatorname{span}\left\{\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\} .
$$

17.1 Draw A, B, and $A+B$ in the same picture.
17.2 Is $A+B$ the same as $B+A$?
17.3 Draw $\ell+A$.
17.4 Consider the line ℓ_{2} given in vector form by $\vec{x}=t\left[\begin{array}{r}1 \\ -1\end{array}\right]+\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Can ℓ_{2} be described using only a span? What about using a span and set addition?

